
Quantum phase transitions and Bose–Einstein condensation of magnons in hexagonal spin

systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys.: Condens. Matter 19 386227

(http://iopscience.iop.org/0953-8984/19/38/386227)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 05:16

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/19/38
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 19 (2007) 386227 (11pp) doi:10.1088/0953-8984/19/38/386227

Quantum phase transitions and Bose–Einstein
condensation of magnons in hexagonal spin systems

Han-Ting Wang and Yupeng Wang

Beijing National Laboratory of Condensed Matter Physics and Institute of Physics, Chinese
Academy of Sciences, Beijing 100080, People’s Republic of China

Received 30 April 2007, in final form 8 August 2007
Published 4 September 2007
Online at stacks.iop.org/JPhysCM/19/386227

Abstract
We study the S = 1 Heisenberg antiferromagnet with single-ion anisotropy
in the hexagonal lattice using the bond-operator theory. The quantum phase
transition from the spin singlet state to the ordered one and the field-induced
long-range order in the perpendicular plane are shown to be described by
the condensation of magnons. The results are compared with those from
experiments using AFeX3 (A = Cs, Rb and X = Cl, Br). The critical exponent
α near Hc1 is found to be about 1.144 in CsFeCl3 and 1.599 in CsFeBr3, which
provides another route to study the dimensional crossover behavior in low-
dimensional spin systems.

1. Introduction

Quantum spin systems have received considerable attention from both theoretical and
experimental points of view. Recently, the quantum phase transition and the condensation
of magnons have been extensively studied. Field-induced long-range order (LRO) in the plane
perpendicular to the external magnetic field has been observed in many materials, such as S = 1
antiferromagnetic chains [1], antiferromagnetic spin dimers [2], even-leg spin ladders [3] and
S = 1

2 alternating chains [4], S = 1 three-dimensional antiferromagnets with large single-
ion anisotropy NiCl2·4SC(NH2)2 [5] and coupled bilayer antiferromagnets BaCuSi2O6 [6, 7].
Theoretically, these experiments are interpreted with the idea of Bose–Einstein condensation
of magnons [8, 9] and are analysed in detail with the methods of Bose–Einstein Hartree–Fock
theory [10, 11], bond-operator mean-field theory [12, 13] and Monte Carlo simulations [14, 15].

On the other hand, the spin frustration effect often plays an important role in the magnetic
ordering process. The frustrated spin system often shows infinite degeneracy in their classical
ground state and quantum fluctuations are crucial to determine the ground states. For example,
motivated by the recent experiments on Cs2CuCl4, the effect of the magnetic field is found to
enhance the quantum fluctuation and to reduce the sublattice magnetization at the intermediate
field in the anisotropic triangular antiferromagnet [16], and the incommensurability of the spin
spiral phase increases with the external field [17]. The ground-state spin structures of CsCuCl3

in a strong magnetic field were studied by mapping the problem onto the equivalent Bose
gas problem [18]. In the following, we study the effects of the frustration on quantum phase

0953-8984/07/386227+11$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0953-8984/19/38/386227
http://stacks.iop.org/JPhysCM/19/386227


J. Phys.: Condens. Matter 19 (2007) 386227 H-T Wang and Y Wang

transitions and on Bose–Einstein condensation of magnons in the stacked triangular systems
and compare the results with ABX3-type hexagonal magnets.

At room temperature, members of the AFeX3 family (with A = Rb and Cs, X = Cl, Br)
have the same hexagonal structure with space group P63/mmc and at low temperature they
exhibit quasi-one-dimensional (1D) magnetic behavior. The magnetic interaction along the
chains is stronger than that between the chains. In all cases the Fe2+ has an effective spin
S = 1 and locally a singlet ground state with m = 0 due to the single ion anisotropy. If
the exchange interaction is small compared to this anisotropy, the whole system has a singlet
ground state (SGS) at T → 0, which is the case for CsFeCl3 and CsFeBr3. While in RbFeCl3
and RbFeBr3, the total exchange energy is large enough to produce magnetic long-range order
at low temperatures. In all Cl compounds the 1D exchange interaction is positive and creates
ferromagnetic behavior along the chains; in contrast, in the Br compounds, this interaction
is negative and thus antiferromagnetic behavior arises. The experimental studies on these
materials were well reviewed by Collins and Petrenko [19].

Very recently, the field-induced magnetic order in the singlet ground state magnets
CsFeBr3 and CsFeCl3 was experimentally investigated [20, 21] by magnetic neutron scattering
and measurements of the magnetization and was discussed in the context of Bose–Einstein
condensation of magnons. Concerning these experimental results, we study the S = 1
Heisenberg model with a single-ion anisotropy in the hexagonal lattice [19]:

H = 1
4

∑

�r,�δ1

[J ⊥
0 (S+

�r S−
�r+�δ1

+ S−
�r S+

�r+�δ1
) + 2J ‖

0 Sz
�r Sz

�r+�δ1
] + 1

4

∑

�r,�δ2

[J ⊥
1 (S+

�r S−
�r+�δ2

+ S−
�r S+

�r+�δ2
)

+ 2J ‖
1 Sz

�r Sz
�r+�δ2

] + D
∑

�r
(Sz

�r )
2 − gμB B

∑

�r
Sz

�r , (1)

where
∑

�r ,�δ1
sums over the nearest neighbors along the chain and

∑
�r,�δ2

in the triangular plane.
An external magnetic field is applied with μB the Bohr magneton.

When J ‖
1 = J ⊥

1 = 0 and J0 > 0, the model reduces to the S = 1 spin chain with
large single-ion anisotropy and is extensively studied in connection with Haldane’s fascinating
conjecture [22]. During Dc1(∼ −0.29) < D < Dc2(∼ 0.93), the system is in the Haldane
phase. When D > Dc3(∼ 1.01), the system is in the large-D phase [23, 24] with a
singlet ground state and an excitation gap. While J ‖

0 = J ⊥
0 = 0, the model (1) describes

an S = 1 antiferromagnet with large single-ion anisotropy in the triangular plane. The
isotropic triangular antiferromagnet with D = 0 has a ground state of the 120◦ three sublattice
structure [25]. Since in the limit of infinite D, the model (1) will be in the singlet state with
all the spins in the state of m = 0, there exists a critical Dc denoting the transition from the
large-D phase to the Néel phase in two and quasi-two dimensions. In the following, we use
the bond operator formalism to study this quantum phase transition and the field-induced LRO
of this model in the hexagonal lattice. In section 2 we give the self-consistent equations on the
S = 1 Heisenberg model with single-ion anisotropy and then in sections 3 and 4, we study
the quantum phase transitions induced by changing the physical parameters and by applying an
external magnetic field, respectively. The experimental results are interpreted at the same time.
A summary is given in section 5.

2. Self-consistent equations on the S = 1 Heisenberg model with single-ion anisotropy

For a single S = 1 spin, the spin operator can be represented as [26, 27] S+ = √
2(tz

†d +u†tz),
S− = √

2(d†tz + t†
z u) and Sz = u†u − d†d , where the three boson operators correspond

to the three eigenstates |±1〉 and |0〉: |1〉 = u†|vac〉, |0〉 = tz
†|vac〉, |−1〉 = d†|vac〉 and

u†u + d†d + t†
z tz = 1.
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Substituting the above boson representation into the original Hamiltonian (1) and assuming
the tz bosons are condensed, 〈tz〉 = 〈t†

z 〉 = t , we get

H = H (chain) + H (plane) + H (D) + H (h) + H (μ) (2)

with

H (chain) = 1
2

∑

�r,�δ1

[J ⊥
0 t2(d†

�r d�r+�δ1
+ u†

�r+�δ1
u�r + u�r d�r+�δ1

+ d†
�r u†

�r+�δ1
+ h.c.)

+ J ‖
0 (u†

�r u�r − d†
�r d�r )(u†
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u�r+�δ1
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�r+�δ1

d�r+�δ1
)]

H (plane) = 1
2
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+ h.c.)
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1 (u†
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�r d�r )(u†

�r+�δ2
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)]

H (D) = D
∑

�r
(u†

�r u�r + d†
�r d�r )

H (h) = −h
∑

�r
(u†

�r u�r − d†
�r d�r )

H (μ) = −
∑

�r
μ�r (u†

�r u�r + d†
�r d�r + t2 − 1)

(3)

where h = gμB B and a temperature-dependent chemical potential μ�r is introduced to impose
the constraint condition of single occupancy. By a mean-field approximation, we replace the
local constraint by a global one and let μ�r = μ. When t2 is close to 1 or the density of the
excitations is small, this approximation proves to be quite effective. It is pointed out that μ is
still temperature-dependent. Making mean-field decoupling to the four operator terms

(u†
�r u�r − d†

�r d�r )(u†
�r+�δu�r+�δ − d†

�r+�δd�r+�δ) = 1
2 (1 − t2 + m)(u†

�r u�r + u†
�r+�δu�r+�δ)

+ 1
2 (1 − t2 − m)(d†

�r d�r + d†
�r+�δd�r+�δ)

− p(u�r d�r+�δ + d�r u�r+�δ + h.c.) − 1
2 (1 − t2)2 − 1

2 m2 + 2p2 (4)

with m = 〈u†
�r u�r − d†

�r d�r 〉, p1 = 〈u�r d�r+�δ1
〉 and p2 = 〈u�r d�r+�δ2

〉 and after a Fourier–Bogoliubov
transformation, we get the diagonalized Hamiltonian

H =
∑

k

(ω
(1)
k α

†
k αk + ω

(2)
k β

†
k βk) +

∑

k

(
ωk − Ak + Bk

2

)
+ E, (5)
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ω
(1,2)

k = ωk ∓ h ± 1
2 (Z1 J ‖
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1 )m

ωk =
√(
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2
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2
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1 γ2k
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2 J ⊥
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0 p1)γ1k + Z2(t

2 J ⊥
1 − J ‖

1 p2)γ2k

E = μN(1 − t2) − 1
4 N Z1 J ‖

0 [(1 − t2)2 + m2 − 4p2
1] − 1

4 N Z2 J ‖
1 [(1 − t2)2 + m2 − 4p2

2],
γ1k = 1

Z1

∑

δ1

ei�k·�δ1

γ2k = 1

Z2

∑

δ2

ei�k·�δ2

(6)

where Z1 = 2 and Z2 = 6 are the numbers of the nearest neighbors along the chain and in
the plane, respectively. γ1k = cos kz and γ2k = 1

3 (cos kx + 2 cos 1
2 kx cos

√
3

2 ky) for the layered
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triangular lattice. αk = χkuk + ρkd†
−k , βk = χkd−k + ρku†

k with χ2
k = 1

2 (1 + Ak +Bk
2ωk

) and ρ2
k =

1
2 (−1 + Ak +Bk

2ωk
). By analysing the excitation spectrum ωk , we find that the energy gap occurs at

�k0 = ( 4
3π, 0, π) for the antiferromagnetic intrachain interaction and at �k0 = ( 4

3π, 0, 0) for the
ferromagnetic intrachain interaction, which corresponds to CsFeBr3 and CsFeCl3 respectively.
The energy gap 
 = ω�k0

. The ground state energy per site is e0 = 1
N

∑
k(ωk − Ak+Bk

2 ) + 1
N E .

The Gibbs free energy G = Ne0 − 1
β

∑
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k )] − 1
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k )] with

n(ωk) = 1
eβωk −1

and β = 1
kBT . p1, p2, t2, μ and m can be obtained by the saddle-point

equations:
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k )],
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2ωk
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(1)
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(2)

k )],

μ = 1

N
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k

Ak + Bk − 2Ck

2ωk
(Z1 J ⊥
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1 γ2k)[1 + n(ω

(1)
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N
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(7)

3. Quantum phase transition from the large-D state to the ordered state

For simplicity, we assume J ‖
0 = J ⊥

0 = J0 and J ‖
1 = J ⊥

1 = J1. At infinite D, all the spins will
be in the state of m = 0 and there is an excitation gap from the singlet to the doublets. With
decreasing D, the energy gap decreases and goes to zero at a critical Dc. With t2 = 1, μ = 0,
p1 = 0 and p2 = 0, ωk reduces to that from the spin wave theory and gives a rough estimation
of Dc = 4|J0| + 6|J1|. We study the antiferromagnetic case J0 > 0 first. In figure 1 (right
axis), we show the changes of the energy gap with D for various J1 = 0.8J0, J1 = 0.5J0,
J1 = 0.3J0, J1 = 0.1J0 and J1 = 0.015J0. The critical Dc decreases with decreasing J1.
However, there exists a critical J1c ∼ 0.012J0, below which the energy gap keeps finite even
at D = 0. In figure 2, we calculate the change of the energy gap for J1 = 0 and J1 = 0.01J0.

/D changes little at large D and increases sharply at small D, which agrees well with the
results obtained by Papanicolaou and Spathis with a modified semiclassical theory based on a
1/n expansion [28]. At large D, the energy gap mainly comes from the change from the singlet
state of m = 0 to the doublets m = ±1 and is proportional to D; at small D, the energy gap
(the Haldane gap) is mainly from the antiferromagnetic interaction. Therefore, the change of

/D gives us some indication of the transition from the large-D phase to the Haldane phase.

When D < Dc, the system enters into the ordered state. We assume part of the excitations
are condensed at �k0 [29]. Keeping ω�k0

= 0, we solve the self-consistent equations (7) with a
BEC amount n0(T ) extracted:

p1 = − C�k0

A�k0
+ B�k0

γ1k0 n0(T ) − 1

2N

∑

k

Ck

ωk
γ1k[1 + n(ω

(1)
k ) + n(ω

(2)
k )],

p2 = − C�k0

A�k0
+ B�k0

γ2k0 n0(T ) − 1

2N

∑

k

Ck

ωk
γ2k[1 + n(ω

(1)
k ) + n(ω

(2)
k )],

2 − t2 = n0(T ) + 1

N

∑

k

Ak + Bk

2ωk
[1 + n(ω

(1)

k ) + n(ω
(2)

k )],
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Figure 1. Changes of the energy gap (right axis) and the magnetization (left axis) with D for
J1 = 0.8 (circles), J1 = 0.5 (triangles), J1 = 0.3 (squares), J1 = 0.1 (diamonds) and J1 = 0.015
(hexagons), respectively. D and J1 are in units of J0 > 0.

μ =
(

1 − 2C�k0

A�k0
+ B�k0

)
(Z1 J ⊥

0 γ1�k0
+ Z2 J ⊥

1 γ2�k0
)n0(T )

+ 1

N

∑

k

Ak + Bk − 2Ck

2ωk
(Z1 J ⊥

0 γ1k + Z2 J ⊥
1 γ2k)[1 + n(ω

(1)
k ) + n(ω

(2)
k )],

m = 2ω�k0

A�k0
+ B�k0

n0(T ) + 1

N

∑

k

[n(ω
(1)

k ) − n(ω
(2)

k )].
(8)

The magnetization induced by the condensation of magnons can be obtained by calculating
〈Sx

�r 〉 and 〈Sy
�r 〉 directly. We have 〈Sx

�r 〉 = 2
√

2t
√

n0 cos(�k0 · �r), 〈Sy
�r 〉 = −2

√
2t

√
n0 sin(�k0 ·

�r) and 〈Mx 〉 =
√

〈Sx
�r 〉2 + 〈Sy

�r 〉2 = 2
√

2t
√

n0. Considering �k0 = ( 4
3π, 0, π) for the

antiferromagnetic intrachain interaction and �k0 = ( 4
3π, 0, 0) for the ferromagnetic intrachain

interaction, we get the 120◦ three sublattice spin structure. In figure 1 (left axis), we present
the changes of 〈Mx 〉 with D for J1 = 0.8J0, J1 = 0.5J0, J1 = 0.3J0, J1 = 0.1J0 and
J1 = 0.015J0.

As mentioned above, when J1 < J1c(∼ 0.012J0), the energy gap keeps finite till D = 0,
hence no quantum phase transition to the ordered state occurs. The existence of the critical
J1c indicates that only a finite interchain interaction can induce long-range order in the coupled
S = 1 antiferromagnetic spin chains. This result is consistent with the studies on the two-
dimensional array of weakly coupled antiferromagnetic spin chains. With the Schwinger-
boson technique and the Wigner–Jordan transformation, it was shown that a finite coupling
is necessary to introduce long-range antiferromagnetic order for the integer-spin case and an
infinitesimal transverse coupling is enough for the half-integer-spin case [30].

When J1 � J0 � 0, the model (1) describes coupled triangular planes. The transition
from the gapped disordered state to the Néel state occurs at larger D than that in the quasi-one-
dimensional case. At J0 = J1, we get Dc = 7.866J1 and at J0 = 0, we have Dc = 2.095J1.

5
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Figure 2. Changes of the energy gap 
/D with D for J1 = 0 (circles) and J1 = 0.01 (triangles)
respectively. D and J1 are in units of J0 > 0. The energy gap 
/D changes little for large D and
increases sharply for small D.

Figure 3. Changes of the energy gap 
 (right axis) and the magnetization Mx (left axis) with D
for J1 = −0.03J0 (triangles), −0.055J0 (squares), −0.067J0 (diamonds), −0.08J0 (hexagons) and
−0.1J0 (circles), respectively. J0 = −1.

In the case of ferromagnetic intrachain interaction J0 < 0 and antiferromagnetic interchain
interaction J1 > 0, the results are quite similar: a transition from the gapped large-D state to
the ordered 120◦ state exists. In figure 3, we show the changes of the energy gap and the
magnetization Mx with D for J1 = −0.03J0, −0.055J0, −0.067J0, −0.08J0 and −0.1J0

respectively. It should be pointed out that there should appear a ferromagnetic state at D = 0
and suitable J1. Unfortunately, we cannot obtain this state since we start from the assumption
of the condensation of tz bosons (in the ferromagnetic state, most spins will be in the state of
m = 1).

6
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4. Long-range order induced by the external magnetic field

When an external magnetic field is applied in the chain direction, the excitations split and
the component αk decreases with increasing magnetic field as shown in equations (6). At
a critical magnetic field hc1 = 
0, the energy gap goes to zero. When the magnetic field
further increases, part of the excitations condense. Consequently, a magnetization parallel
to the external magnetic field appears and at the same time antiferromagnetic long-range
order in the plane perpendicular to the magnetic field occurs. Similarly, we solve the self-
consistent equations (7) with a BEC amount nh(T ) extracted and ω1k0 = 0. The arrangement
of the spins is still determined by �k0. The magnetization in the perpendicular plane is

〈Mx 〉 = √
2t

√
nh

√
1 − 2Ck0

Ak0 +Bk0
, where nh is the condensed density induced by the magnetic

field. At a second critical magnetic field hc2, the parallel magnetization saturates and the
antiferromagnetic LRO in the perpendicular plane disappears. With p1 = p2 = 0, m = 1
and t = 0, an estimation of hc2 gives hc2 = D + Z1(J ‖

0 + |J ⊥
0 |) + Z2(J ‖

1 + 1
2 J ⊥

1 ). For a given
magnetic field hc2 > h > hc1, we can get a critical temperature Tc(h), at which the energy gap
and the condensed density nh(T ) are both zero.

We study CsFeCl3 and RbFeCl3 first. CsFeCl3 and RbFeCl3 have ferromagnetic interaction
along the c-axis and antiferromagnetic interaction in the triangular plane. Depending on
the relative magnitudes of the exchange interaction and the large D term, CsFeCl3 and
RbFeCl3 show remarkably different magnetic properties at low temperatures. CsFeCl3 has
a nonmagnetic ground state at zero magnetic field. When an external magnetic field is applied
along the c-axis, field-induced three-dimensional long-range order appears in the field region
of 4 T � H � 11 T at TN � 2.6 K [31]. While RbFeCl3 reveals three-dimensional long-
range order below TN = 2.55 K [32]. Very recently, the field-induced magnetic order in
CsFeCl3 was studied by the measurements of the magnetization M‖ and the magnetic neutron
scattering from M⊥ [21]. In particular, the field dependence of M⊥ was clearly shown to be
described by the order parameter 〈Sx 〉 and the incommensurate–commensurate phase transition
was observed in the field region of 5 T < H < 6 T. The phase diagrams of CsFeCl3 in
the H –T plane were extensively studied experimentally [21, 31, 33] and theoretically by the
dynamical correlated-effective-field theory (DCEFT) [36]. Since the physical parameters from
different groups are quite different, we solve equations (7) with several sets of parameters
and try to study the effects of every physical parameter. In figure 4, we show the phase
diagrams in the H –T plane with J0 = −1, J1 = 0.055, 0.067, 0.08 and D = 3, 4,
5, respectively. The critical temperature Tc increases quickly with increasing J1 and the
critical magnetic fields hc1 and hc2 are mainly decided by D. Relatively, the parameters of
J1 = 0.067|J0| and D = 4|J0| with J0 = −4.11 K can give good results compared with
the experimental data. For example, the critical magnetic field Hc1 = 1.659|J0| = 4.0T and
Hc2 = 4.603|J0| = 11.1 T with g‖ = 2.54. However, the values of Tc are lower than those of
the experiments.

Near hc1, we fit the results with hc1(T )−hc1(0) ∝ T α with J1 = 0.067|J0| and D = 4|J0|.
We get α ≈ 1.144, which are much smaller than those of the unfrustrated three-dimensional
systems [10, 11, 13–15]. We further calculate the changes of α with various interchain
interactions J1. Up to J1 = 0.25|J0|, α is nearly the same (for |J0/J1| = 0.01, 0.03, 0.067,
0.1, 0.2, and 0.25, we get α = 1.140, 1.142, 1.144, 1.160, 1.177 and 1.209, respectively). The
dimensional crossover behavior at a quantum critical point is currently an interesting topic in
the subject of Bose–Einstein condensation of magnons [34, 35]. CsFeCl3, with ferromagnetic
interaction along the chain, provides us with another real material to use when studying this
problem.

7
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Figure 4. Critical temperature Tc(h) for CsFeCl3 with J1 = −0.055J0 (black symbols), −0.067J0
(symbols with crosses), −0.08J0 (white symbols) and D = 3 (squares), D = 4 (circles) and D = 5
(triangles). The temperature and the magnetic field h(= gμB B) are in units of |J0| = 1.

Figure 5. Changes of the field-induced magnetization Mx with temperatures at h = 1.8 (squares),
2.6 (triangles), 3. (diamonds), 3.4 (stars) and 3.8 (circles) in CsFeCl3, where J1 = 0.067|J0| and
D = 4|J0|. The temperature and the magnetic field h(= gμB B) are in units of |J0|.

In figure 5, we show the changes of Mx with temperature and magnetic field for J1 =
0.067|J0| and D = 4|J0|.

RbFeCl3 reveals three-dimensional LRO below TN = 2.55 K. As a comparison, we give
its phase diagram in figure 6 with J ⊥

0 = −1, J ‖
0 = −1.3, J ⊥

1 = −0.085J ⊥
0 , J ‖

1 = −0.085J ‖
0

and D = 2. The parameters are from Suzuki’s DCEFA theory [37].
Different from CsFeCl3 and RbFeCl3, CsFeBr3 and RbFeBr3 have antiferromagnetic

interaction along the c-axis and antiferromagnetic interaction in the triangular plane. The
ground state of CsFeBr3 is a spin singlet due to the large single-ion anisotropy. The interaction
parameters determined by different research groups are different. Considering most groups
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Figure 6. Critical temperature Tc(h) for RbFeCl3. The physical parameters are chosen as J ⊥
0 = −1,

J ‖
0 = −1.3, J ⊥

1 = −0.085J ⊥
0 , J ‖

1 = −0.085J ‖
0 and D = 2. The temperature and the magnetic

field h(= gμB B) are in units of |J ⊥
0 |.

Figure 7. Critical temperature Tc(h) for CsFeBr3 (squares) and RbFeBr3 (circles). For CsFeBr3,
J1 = 0.1J0 and D = 3.36J0. The temperature and the magnetic field h(= gμB H ) are in units of J0

and J0 = 6.4 K. For RbFeBr3, the physical parameters are chosen as J ⊥
0 = 0.67J ‖

0 , J ‖
1 = 0.1J ‖

0 ,

J ⊥
1 = 0.1J ⊥

0 and D = 0.8625J ‖
0 . The temperature and the magnetic field h(= gμB B) are in units

of J ‖
0 .

gave J ⊥
0 ≈ J ‖

0 and J ⊥
1 ≈ J ‖

1 [19, 20, 38], we set J ⊥
0 = J ‖

0 and J ⊥
1 = J ‖

1 and extract the
parameters as J0 = 6.4 K, J1 = 0.1J0 and D = 3.36J0 = 21.5 K. Solving equations (7),
we have 
 = 0.818 88J0 = 5.24 K and Hc2 = 8.26J0 = 52.86 K, which agrees well with
the experimental data Hc1 = 2.89 T = 5.242 K and Hc2 = 27.8 T = 54 K with g‖ = 2.7.
In figure 7 (curve with squares), we show the phase diagram in the H –T plane. This is in
agreement with the experimental results obtained by magnetic susceptibility, the magnetization
process and specific measurements [20] and by an NMR experiments [39]. Fitting the data with
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hc1(T )−hc1(0) ∝ T α near hc1, we find α ∼ 1.599, which is consistent with φ2 = 1.8 obtained
near HN2 in CsFeBr3 [20].

In RbFeBr3, three-dimensional long-range order is realized at 5.5 K because of the strong
intrachain exchange interaction compared with the crystalline field splitting together with weak
interchain interaction [40]. As a comparison, in figure 7 (curve with circles), we show the
critical temperature as a function of magnetic field, where the physical parameters are chosen
as [40, 41] J ⊥

0 = 0.67J ‖
0 , J ‖

1 = 0.1J ‖
0 , J ⊥

1 = 0.1J ⊥
0 and D = 0.8625J ‖

0 . Although the phase
diagrams of CsFeCl3 and RbFeCl3 were largely studied experimentally and theoretically and
of CsFeBr3 experimentally, the phase diagram of RbFeBr3 is seldom studied.

The magnetic dipole–dipole interaction in CsFeCl3 and RbFeCl3 with ferromagnetic
intrachain interaction may play an important role. The incommensurate–commensurate phase
transition in the magnetic field [21, 32] was attributed to this interaction by Shiba [42] and to the
spin fluctuations by Lindgård [43]. Both the transverse and the longitudinal spin fluctuations
were argued to be responsible for the two-step phase transition observed in CsFeBr3 [20].
The lattice deformation or structure phase transition was observed in CsFeCl3 [21] and
RbFeBr3 [44]. To give an intuitive and unified theory within the context of Bose–Einstein
condensation of magnons, we do not consider these subtle effects in our studies.

5. Summary

In summary, we have studied the S = 1 Heisenberg antiferromagnet with single-ion anisotropy
in the layered triangular lattice by the bond-operator theory. The quantum phase transition
from the spin singlet state to the ordered one and the field-induced long-range order in the
perpendicular plane are shown to be described by the condensation of magnons. In comparison
with the experimental results on AFeX3 (A = Cs, Rb and X = Cl, Br), we calculate the phase
diagram, the field-induced staggered magnetization and the critical exponent near Hc1. The
exponent α are found to be about 1.144 in CsFeCl3 and 1.599 in CsFeBr3, which provides
another route to study the dimensional crossover behavior in the low-dimensional spin systems.
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